W7 1

Is the set
$A_{D F A}=\{\langle B, w\rangle \mid B$ is a DFA that accepts input string $w\}$ finite or infinite?

A Finite
B Infinite

Suppose we divide up this problem $A_{D F A}=\{\langle B, w\rangle \mid B$ is a DFA that accepts input string $w\}$ into
Part A: B is a DFA, and
Part B: Given that B is a DFA, does B accept string w Which part looks harder?

A A
B B

W7 3

Suppose for Part A: B is a DFA, we were to make use of the definition of a DFA.

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. $\delta: \rightarrow Q \times \Sigma \rightarrow Q$ is the transition function,
4. $q_{0} \in Q$ is the start state,
5. $F \subseteq Q$ is the set of accept states

A If the DFA were required to be expressed in these parts, a Java program, or a Turing machine, could be written to check candidate machine descriptions, and it could give the correct answer every time.
B. With the qualification that the input has to be finite, A would be right.
C A DFA could be defined that does not fit the description above.
D It would not necessarily work for NFAs.

W7 4

Suppose for Part B: Given that B is a DFA, does B accept string w, we were to make use of the definition of a computation: machine M accepts w if a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ in Q exists with three conditions:
1.
$r_{0}=q_{0}$,
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$, for $i=0, \ldots, n-1$, and
3. $r_{n} \in F$

A Given a DFA description (for q_{0}, δ, F, etc.), and a finite input sequence r a Java program or Turing machine could be written, to check this and answer correctly in a finite time.
B The above description of computation is not complete.
C The above description cannot work because there are multiple possibilities for exiting state q_{0}, one for each symbol in the machine's alphabet.
D The above description cannot work because there are multiple possibilities for exiting state q_{0}, at least one for each symbol in the machine's alphabet.

Why can we pose the finite automaton empty language problem as a graph problem?

A DFAs have a finite number of states, and can represent an infinite language.
B NFAs can always be converted into DFAs.
C Breadth first search is better than depth first search if the language can be infinite.
D DFA states correspond to vertices and the transition function gives a correspondence between the language and the edges.
E NFA states correspond to vertices and the transition function maps the Cartesian product of states and alphabet symbols to a single target state of the corresponding DFA.

W7 6

If a DFA graph is connected, is its language empty?
A Yes.
B No.
C It depends.

If a PDA graph is unconnected, is its language empty?
A Yes.
B No.
C It depends.
stop for a while

W7 8

This construction proves that regular languages are closed under what operation?

A. Union

B Intersection
C Complementation
D Concatenation
E Star

W7 9

This construction proves that regular languages are closed under what operation?

A Union
B Intersection
C Complementation
D Concatenation
E Star

W7 10

This construction proves that regular languages are closed under what operation?
$\{A \cup B\}^{\prime}=\left\{A^{\prime} \cap B^{\prime}\right\}$, where A and B are sets, and ' means complementation.

A Union
B Intersection
C Complementation
D Concatenation
E Star

W7 11

This construction proves that regular languages are closed under what operation?

A Union
B Intersection
C Complementation
D Concatenation
E Star

WT 12

Given the several constructions just seen, is the following a Turing machine?
$F=$ "On input $\langle A, B\rangle$, where A and B are DFAs:

1. Construct DFA $C=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))$
2. run TM T that checks whether a DFA has an empty language on $\langle C\rangle$
3. If T accepts, accept. If T rejects, reject."

A Yes
B No
stop for a while

